

Amazon Elasticsearch
Service

Fully managed search and analytics service.

Have your front end and monitor it too!

Lab 2 Instructions

Contents
Lab 2 Overview .. 3

Launch the “bootcamp-aes-lab2” nested stack .. 4

Navigate to the AWS CloudFormation console .. 4

Provide the AWS CloudFormation S3 URL .. 5

Populate the needed parameters ... 5

Deploy the stack .. 7

Log consumer aggregation configuration (Logstash) .. 8

Logstash configuration .. 8

Review the configuration for Metricbeat for the Logstash process ... 10

Review the configuration for Kinesis for the Logstash process .. 11

Start Logstash and monitor the startup log .. 14

Review the Metricbeat configuration ... 15

Install Metricbeat agent from the preconfigured YUM repo ... 16

Start Metricbeat .. 16

Log producer configuration (Fluentd) – React Apache Server .. 20

Source section ... 22

Filter section ... 23

Explore the ec2_metadata filter ... 23

Explore the record_transformer filter .. 23

Match section ... 24

Start the Fluentd agent (react server) .. 24

Validate you are receiving logs in Kibana ... 26

Log producer configuration (Fluentd) – Kibana Proxy - NGINX Server ... 26

Source section ... 28

Filter section ... 28

Start the Fluentd agent (proxy server) .. 28

Validate you are receiving logs in Kibana ... 30

Lab 2 Overview
In this lab, you configure Fluentd, Metricbeat and Logstash so that you can write events

and metrics to your Amazon Elasticsearch Service domain. Events are written directly or

indirectly the domain using Amazon Kinesis Data Streams or through direct signed

requests over HTTPS to the domain.

Once the logs persist in the domain, you will review the data and the indexes created

from your actions.

This lab is an exercise in configuration. Please take the time to understand the

configurations. The details contained in this architecture are hard to find in one blog post

or vendor documentation. Setting up this type of pipeline is hard and time consuming. It

is not a simple task to put this architecture together without understanding why specific

components surface in the final implementation. The lab guide discusses the integration

topics in detail. Feel free to skip over those details if you time is a concern.

Launch the “bootcamp-aes-lab2” nested stack
This is the final AWS CloudFormation stack for the bootcamp. This stack creates a fleet

of Logstash instances on Amazon EC2. The instances are behind an auto-scaling group.

Auto-scaling groups have two benefits:

1) They enable you to adjust the Logstash fleet size based on volume of traffic.

2) They promote self-healing. If the size of your fleet is set to three and one fails,

auto-scaling will replace that instance so that your fleet remains healthy and

preserves throughput.

Navigate to the AWS CloudFormation console

As you have done in the last lab, navigate to the “Create stack” button in the console.

Provide the AWS CloudFormation S3 URL

Paste in the following link (mac users beware PDF documents sometimes do tricky things

with URLS that have dashes):

https://search-sa-log-solutions.s3-us-east-2.amazonaws.com/fluentd-kinesis-

logstash/templates/json/bootcamp-aes-lab2

Make sure all dashes are present. Click the next button when you are done.

Populate the needed parameters

 Stack Name – ant303-lab2

 KickoffStackName – ant303

 OperatorEMail – your email address (not captured and used for anything other

than giving you notifications for instance events via auto scaling).

https://search-sa-log-solutions.s3-us-east-2.amazonaws.com/fluentd-kinesis-logstash/templates/json/bootcamp-aes-lab2
https://search-sa-log-solutions.s3-us-east-2.amazonaws.com/fluentd-kinesis-logstash/templates/json/bootcamp-aes-lab2

Click next. On the new screen select Stack creation options and disable rollback. Click

next.

Review the deployment. Select the approval checkboxes for IAM and then click on the

“Create stack” button.

Deploy the stack

Periodically monitor the deployment. The circle with arrows in the middle of the screen

gives you access to refresh the periodic cycle.

Once the deployment is complete, you can start configuring the ingestion layer.

Log consumer aggregation configuration (Logstash)
By now, you can navigate to your AWS Systems Manager console and observe that you

have three running instances for your log analytics pipeline. You will see a similar screen.

Logstash configuration

Logstash is built on top of a JVM and it employs a plugin strategy. The plugins address

a wide variety of things from data input, filtering, transformation and routing data to a set

of destinations. Data sources for Logstash in this workshop are:

 Metricbeat agent – the Logstash server has a configuration to receive events from

port 5044. Metricbeat provides system details for the Logstash servers like:

o CPU utilization

o File system details

o Memory

o Load on the system

o In addition, more…

 Amazon Kinesis Data Streams – buffer for incoming data. If Amazon ES needs to

limit requests, you do not suffer consequences of lost data.

o Takes in multi-tenant data (more than one application is using the Amazon

Elasticsearch Service domain).

o Data can survive for up to 7 days based on configuration settings.

o Clients like Logstash are able to parse disparate data formats and route

them to the correct index.

In AWS Systems Manager, start a host session for the active Logstash server.

Once the session has launched, switch users to root and execute the following

sequence of commands:

 sudo su – root

 cd /etc/logstash

 cat pipelines.yml

Observe similar output:

sh-4.2$ sudo su - root

[root@ip-10-1-6-149 ~]# cd /etc/logstash/

[root@ip-10-1-6-149 logstash]# ls -al

total 52

drwxr-xr-x 3 root root 181 Nov 30 04:51 .

drwxr-xr-x 83 root root 8192 Nov 30 12:03 ..

drwxrwxr-x 2 root root 47 Nov 30 04:51 conf.d

-rw-r--r-- 1 root root 2019 Sep 27 10:25 jvm.options

-rw-r--r-- 1 root root 5043 Sep 27 10:25 log4j2.properties

-rw-r--r-- 1 root root 342 Sep 27 10:25 logstash-sample.conf

-rw-r--r-- 1 root root 8236 Nov 30 04:50 logstash.yml

-rw-r--r-- 1 root root 152 Nov 30 04:51 pipelines.yml

-rw-r--r-- 1 root root 285 Sep 27 10:25 pipelines.yml.bak

-rw------- 1 root root 1696 Sep 27 10:25 startup.options

[root@ip-10-1-6-149 logstash]# cat pipelines.yml

- pipeline.id: metricbeat

 path.config: "/etc/logstash/conf.d/metricbeat.cfg"

- pipeline.id: kinesis

 path.config: "/etc/logstash/conf.d/kinesis.cfg"

[root@ip-10-1-6-149 logstash]#

Logstash has a function called pipelines. Pipelines give you the ability to define multiple
flows for the different log sources in your solution. You have two log sources:

 Metricbeat data – this data comes from the local host so you can monitor
performance on the Logstash node to ensure they are configured to performance
needs

 Amazon Kinesis Data Streams – this data is on one stream (2 Kinesis shards)
holding two different event sources:

o Access logs from the Kibana proxy server, in NGINX format, enhanced
with instance metadata.

o Access logs from the React web server, in Apache format, enhanced with
instance metadata.

Run the next set of commands to review the two pipelines:

 sudo su – root

 cd /etc/logstash

[root@ip-10-1-6-149 logstash]# cd conf.d/

[root@ip-10-1-6-149 conf.d]# ls -al

total 8

drwxrwxr-x 2 root root 47 Nov 30 04:51 .

drwxr-xr-x 3 root root 181 Nov 30 04:51 ..

-rw-r--r-- 1 root root 832 Nov 30 04:51 kinesis.cfg

-rw-r--r-- 1 root root 294 Nov 30 04:51 metricbeat.cfg

[root@ip-10-1-6-149 conf.d]#

You will see two configurations, one for each pipeline.

Review the configuration for Metricbeat for the Logstash process

Run the following command to view the metricbeat.cfg

 cat metricbeat.cfg

[root@ip-10-1-6-149 conf.d]# cat metricbeat.cfg

input {

 beats {

 port => 5044

 }

}

output {

 amazon_es {

 hosts => ["vpc-es-lab-026925054f2e-5ktmz7pklga74holuc2wjvounq.eu-

central-1.es.amazonaws.com"]

 region => ["eu-central-1"]

 index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}"

 }

}

[root@ip-10-1-6-149 conf.d]#

https://www.elastic.co/guide/en/logstash/current/multiple-pipelines.html

As you review the configuration file, you see two sections called:

 input – defines the source

 output – defines the sink

In this case, Metricbeat itself has a configuration file that posts data on port 5044.

When Logstash starts up, it will create a listener on port 5044 so that it can receive

events from the Metricbeat process. This is the input for the one pipeline.

The output is the Amazon Elasticsearch Service and prefilled with the necessary

endpoint details. As you review the configuration, note that the output plugin labeling is

“amazon_es” and not “elasticsearch”. There are two popular plugins found in the

Logstash ecosystem when it comes to writing to Elasticsearch. The “amazon_es”

plugin signs requests with Sigv4. The “elasticsearch” plugin does not. This plugin

(“amazon_es”) is specifically required to sign requests to the domain if you use IAM to

control access. It reads instance metadata to pull the credential secret key and access

key need to sign requests.

In summary, the configuration will read Metricbeat data from a local Metricbeat instance

over port 5044. It will receive the events in JSON format and write them to your

domain. By using the “beats” ecosystem, the mappings are populated in the for the

Metricbeat index automatically when the pipeline deploys.

Review the configuration for Kinesis for the Logstash process

The Kinesis pipeline is a bit more robust. Two different types of logs come from Kinesis

once the end-to-end pipeline is setup. These are:

 Access logs generated by NGINX for the Kibana proxy – they use the common

log format but don’t populate same fields as Apache access logs

 Access logs generated by Apache / React serving – they also use the common

log format but again, different fields

Fluentd also populates additional fields such as instance id, VPC id, and other AWS

specific metadata. The format you receive deviates from the common log format and

comes in as a JSON structure.

View the configuration and look at what each section does by using the less command:

 less kinesis.cfg

[root@ip-10-1-6-149 conf.d]# less kinesis.cfg

Input section

The input section uses a Kinesis input plugin for reading events from the Amazon Kinesis

Data Stream. This plugin also uses Sigv4 signed requests and uses instance profile

metadata to get the secret key and access key for signing. The AWS CloudFormation

template for the Logstash instances pre-populate the necessary details for the stream

and the region.

input {

 kinesis {

 kinesis_stream_name => "log-delivery-026925054f2e"

 type => "kinesis"

 region => "eu-central-1"

 application_name => "026925054f2e"

 }

}

Filter sections

The filter sections pull out and work with data.

filter {

 json {

 source => "message"

 }

}

filter {

 if ([message] =~ /^.*HealthChecker.*/) {

 drop {}

 }

}

The first filter pulls the message from the stream. This message is already in JSON

format from the Fluentd agents running on the web and proxy server. Here is an example

of each message:

Log from web server:

{"host":"44.224.22.196","user":null,"method":"GET","path":"/","code":200,"siz

e":431,"referer":null,"agent":"AWS Security Scanner","hostname":"06c1d1eeaccc-

web-servers-filebeat","instance_id":"i-

08b69473828395754","instance_type":"t2.large","private_ip":"10.1.5.197","az":

"eu-west-1b","vpc_id":"vpc-07e4284eafdd552b2","ami_id":"ami-

0ce71448843cb18a1","account_id":"123456789012","event_group":"imdb"}

Log from NGINX proxy server:

{"remote":"75.67.145.147","host":"-","user":"-

","method":"POST","path":"/_plugin/kibana/api/console/proxy?path=_aliases&met

hod=GET","code":"200","size":"585","referer":"https://34.247.200.105/_plugin/

kibana/app/kibana","agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.97

Safari/537.36","http_x_forwarded_for":"-","hostname":"06c1d1eeaccc-kibana-

proxy","instance_id":"i-

01fa1f1afc44f81c7","instance_type":"t2.large","private_ip":"10.1.0.150","az":

"eu-west-1a","vpc_id":"vpc-07e4284eafdd552b2","ami_id":"ami-

0ce71448843cb18a1","account_id":"123456789012","event_group":"proxy"}

Both are similar, however, there is enough variance that you can break out the logs into

separate indexes to have solid mappings. Both come in as the “message” payload from

the stream. The JSON filter pulls out that detail and breaks the JSON document into

individual fields.

The next filter looks at the message and sees if there are any heath check messages

from the Application Load Balancer. A large majority of the logs are health check events.

These are not adding any value for our workshop goals and it is much easier to eliminate

the documents before they arrive in the domain. This will also cut down on long term

costs for the domain because more data = more storage = more cost.

Output section

The output section does two things.

 It applies a condition expression on the “event_group” field to route the data to

separate indexes. The “event_group” is populated by Fluentd further up the ingest

stream and can be one of “proxy” or “imdb”.

 It then uses the “amazon_es” plugin to write to the Amazon Elasticsearch Service.

This plugin, as mentioned before, signs the requests using Sigv4. It uses the

instance profile metadata to get secret key and access key data for the request

signing. Note that each section writes to a separate index post fixed with the year,

month and day for rolling log files.

output {

 if [event_group] == "proxy" {

 amazon_es {

 hosts => ["vpc-es-lab-026925054f2e-5ktmz7pklga74holuc2wjvounq.eu-

central-1.es.amazonaws.com"]

 region => ["eu-central-1"]

 index => "proxy-%{+YYYY.MM.dd}"

 }

 }

 else {

 amazon_es {

 hosts => ["vpc-es-lab-026925054f2e-5ktmz7pklga74holuc2wjvounq.eu-

central-1.es.amazonaws.com"]

 region => ["eu-central-1"]

 index => "webapp-%{+YYYY.MM.dd}"

 }

 }

}

Start Logstash and monitor the startup log

Now you can start Logstash and begin consuming the first set of events. Since the

Amazon Kinesis stream will not have and data yet, you will only see Metricbeat data in

the cluster.

 service logstash start

 less /var/log/logstash/logstash-plain.log

[root@ip-10-1-6-149 conf.d]# service logstash start

Redirecting to /bin/systemctl start logstash.service

[root@ip-10-1-6-149 conf.d]# less /var/log/logstash/logstash-plain.log

Page down to the bottom of the file. There should be no errors. You can see that
Logstash loaded the configurations.

[2019-11-30T14:52:13,737][INFO][logstash.outputs.elasticsearch][kinesis]

Installing amazon_es template to /_template/logstash

[2019-11-30T14:52:13,743][INFO][logstash.outputs.elasticsearch][metricbeat]

Installing amazon_es template to /_template/Logstash

The next set of events are the different plugins starting listeners and connections. You
can see elasticsearch connection detail.

[2019-11-30T14:52:13,748][WARN][logstash.outputs.elasticsearch][kinesis]

Restored connection to ES instance {:url=>"https://vpc-es-lab-026925054f2e-

5ktmz7pklga74holuc2wjvounq.eu-central-1.es.amazonaws.com:443/"}

[2019-11-30T14:52:13,791][INFO][logstash.outputs.elasticsearch][kinesis] ES

Output version determined {:es_version=>7}

[2019-11-30T14:52:13,792][WARN][logstash.outputs.elasticsearch][kinesis]

Detected a 6.x and above cluster: the `type` event field won't be used to

determine the document _type {:es_version=>7}

[2019-11-30T14:52:13,812][INFO][logstash.outputs.elasticsearch][kinesis] New

Elasticsearch output {:class=>"LogStash::Outputs::ElasticSearch",

:hosts=>["//vpc-es-lab-026925054f2e-5ktmz7pklga74holuc2wjvounq.eu-central-

1.es.amazonaws.com"]}

[2019-11-30T14:52:13,813][INFO][logstash.outputs.elasticsearch][kinesis]

Using mapping template from {:path=>nil}

[2019-11-30T14:52:13,821][INFO][logstash.outputs.elasticsearch][kinesis]

Attempting to install template {:manage_template=>{"template"=>"logstash-*",

"version"=>60002, "settings"=>{"index.refresh_interval"=>"5s",

"number_of_shards"=>1},

"mappings"=>{"dynamic_templates"=>[{"message_field"=>{"path_match"=>"message"

, "match_mapping_type"=>"string", "mapping"=>{"type"=>"text",

"norms"=>false}}}, {"string_fields"=>{"match"=>"*",

"match_mapping_type"=>"string", "mapping"=>{"type"=>"text", "norms"=>false,

"fields"=>{"keyword"=>{"type"=>"keyword", "ignore_above"=>256}}}}}],

"properties"=>{"@timestamp"=>{"type"=>"date"},

"@version"=>{"type"=>"keyword"}, "geoip"=>{"dynamic"=>true,

"properties"=>{"ip"=>{"type"=>"ip"}, "location"=>{"type"=>"geo_point"},

"latitude"=>{"type"=>"half_float"}, "longitude"=>{"type"=>"half_float"}}}}}}}

[2019-11-30T14:52:13,876][INFO][logstash.outputs.elasticsearch][kinesis]

Installing amazon_es template to /_template/logstash

[2019-11-30T14:52:14,021][WARN

][org.logstash.instrument.metrics.gauge.LazyDelegatingGauge][kinesis] A gauge

metric of an unknown type (org.jruby.RubyArray) has been create for key:

cluster_uuids. This may result in invalid serialization. It is recommended

to log an issue to the responsible developer/development team.

[2019-11-30T14:52:14,024][INFO][logstash.javapipeline][kinesis] Starting

pipeline {:pipeline_id=>"kinesis", "pipeline.workers"=>2,

"pipeline.batch.size"=>125, "pipeline.batch.delay"=>50,

"pipeline.max_inflight"=>250, :thread=>"#<Thread:0x2c171f0a run>"}

[2019-11-30T14:52:14,384][INFO][logstash.javapipeline][kinesis] Pipeline

started {"pipeline.id"=>"kinesis"}

[2019-11-30T14:52:14,927][INFO][logstash.inputs.beats][metricbeat] Beats

inputs: Starting input listener {:address=>"0.0.0.0:5044"}

[2019-11-30T14:52:14,960][INFO][logstash.javapipeline][metricbeat]

Pipeline started {"pipeline.id"=>"metricbeat"}

The final set of events summarize the pipelines that are running and the establishment
of the listener for Metricbeat data.

[2019-11-30T14:52:15,189][INFO][logstash.agent] Pipelines running

{:count=>2, :running_pipelines=>[:kinesis, :metricbeat],

:non_running_pipelines=>[]}

[2019-11-30T14:52:15,236][INFO][org.logstash.beats.Server][metricbeat]

Starting server on port: 5044

[2019-11-30T14:52:15,778][INFO][logstash.agent] Successfully

started Logstash API endpoint {:port=>9600}

You now have a functional Logstash deployment! We need some data now!

Review the Metricbeat configuration

Now that Logstash is up and running, we can enable the Metricbeat agent. Review the

configuration for Metricbeat by issuing the following command. This configuration is

created by AWS CloudFormation template for the Logstash stack.

 less /etc/metricbeat/metricbeat.yml

[root@ip-10-1-6-149 conf.d]# cat /etc/metricbeat/metricbeat.yml

metricbeat.modules:

- module: system

 metricsets:

 - cpu

 - load

 - filesystem

 - fsstat

 - memory

 - network

 - process

 enabled: true

 period: 10s

 processes: ['.*']

name: "logstash-server"

output.logstash:

 hosts: ["127.0.0.1:5044"]

logging.to_syslog: true

[root@ip-10-1-6-149 conf.d]#

As with the Logstash configuration, there is a concept of inputs and outputs. In this case,

Metricbeat is a purpose built, lightweight agent that has specific monitoring modules for

input of data for things like cpu, memory, and network data. You enable these modules

by adding them to the metricset configuration.

On the output side of things, you configure the Logstash output to write to port 5044.

Keep in mind; you configured Logstash in the previous section so it could listen for events

written by Metricbeat.

Install Metricbeat agent from the preconfigured YUM repo

Since the CloudFormation template did not preinstall the Metricbeat agent, you need to

install it by issuing the following command:

 yum install –y metricbeat

[root@ip-10-1-6-149 conf.d]# yum install –y metricbeat

…

Installing : metricbeat-7.4.2-1.x86_64

1/1

warning: /etc/metricbeat/metricbeat.yml created as

/etc/metricbeat/metricbeat.yml.rpmnew

 Verifying : metricbeat-7.4.2-1.x86_64

1/1

Installed:

 metricbeat.x86_64 0:7.4.2-1

Complete!

[root@ip-10-1-6-149 conf.d]#

You should see the “Complete!” message once the agent installs.

Start Metricbeat

Start the Metricbeat agent by running the following commands:

 service metricbeat start

[root@ip-10-1-6-149 conf.d]# service metricbeat start

Starting metricbeat (via systemctl): [OK]

[root@ip-10-1-6-149 conf.d]#

The process is writing events to Logstash, which in turn, is writing events to Elasticsearch.

Let us validate the data in Kibana with the Dev Tools plugin. Navigate to the Kibana

console and click on the Settings plugin. You are going to configure an index pattern for

Metricbeat.

Click on Index Patterns to create a new pattern.

You will see the newly created metricbeat-7.*.* index. Type in metricbeat* and click “Next

step”.

Select the @timestamp field and click on “Create index pattern”. Your Kibana instance

will start scanning the available records and apply default mappings to the data. In the

last part of this workshop, you will import prebuilt dashboards for visualizing the

Metricbeat data.

Next, navigate to the Discover plugin on the left hand menu bar.

Once in the Discover plugin, you can start exploring the data. There is a field selection

menu on the left hand side to help you navigate the data.

Select the following fields from the field navigator to narrow down the data you view for

each document:

 system.cpu.total.pct

 process.name

 process.executable

 process.pid

Scroll back up to the top once you have added the fields. You will see a bunch of bars

that represent time slices of data. In this case, it is a 30-second window of data from

Metricbeat sliced into buckets. Using your mouse pointer, click on one of the bars to

narrow the scope of the data you view.

As you can see, the Discover plugin helps you explore the data to find fields that might

be relevant to the operation and monitoring of your entire solution.

Now that you have a flow of data coming in from Logstash, the Amazon Kinesis Data

Stream is sitting idle. It needs some data! Let us go to the React application web server,

enable Fluentd to write data to the Amazon Kinesis Data Stream so that Logstash can

pick it up, and send it to Elasticsearch.

Log producer configuration (Fluentd) – React Apache Server
Since the React framework serves from an Apache web server, data called “access logs”

writes to the local file system. Apache creates both error logs and access logs. You are

going to mine data from the access logs so that you can visualize things like most popular

queries, the different type of HTTP method calls like GET, PUT and POST, and the

volume of data returned in each HTTP call.

For this workshop’s goals, I have specifically chosen Fluentd as the log collector of choice.

Why? AWS has many internal agents and one of those is the Kinesis Agent. However,

you are going to enrich the data. Both the Kinesis Agent and the Fluentd agent move

files and they do it with efficiency and at scale. However, Fluentd provides a rich set of

utilities to transform and munge the data before it even gets to Logstash. You could

manipulate the data in Logstash, however, you burn CPU cycles in the Logstash

https://docs.aws.amazon.com/streams/latest/dev/writing-with-agents.html

processes. As a design preference in this particular use case, Fluentd provides

enrichment at the edge. You get to use the distributed compute of all your logging

instances to do the dirty work. That gives you the freedom to optimize the performance

to the Logstash deployment and not worry about pegging the JVM for massive

transformations. Logstash then becomes a simple pass through framework.

Now that you understand the reason for the choice, let us get started by opening up a

session on the React web server. Navigate to AWS Systems Manager and begin a

session on the React server.

Once the console renders in your browser, click in the web page and type the following

commands:

 sudo su – root

 cd /etc/td-agent/

 ls –al

 less td-agent.conf

You will see output similar to what shows below:

sh-4.2$ sudo su - root

[root@ip-10-1-6-222 ~]# cd /etc/td-agent/

[root@ip-10-1-6-222 td-agent]# ls -al

total 20

drwxr-xr-x 3 root root 61 Nov 30 00:00 .

drwxr-xr-x 90 root root 8192 Nov 30 18:06 ..

drwxr-xr-x 2 root root 6 Nov 29 23:58 plugin

-rw-r--r-- 1 td-agent td-agent 1020 Nov 30 00:00 td-agent.conf

-rw-r--r-- 1 root root 2381 Nov 29 23:58 td-agent.old

[root@ip-10-1-6-222 td-agent]# less td-agent.conf

Now let us review the configuration to understand what is happening.

Source section

The source section does exactly what it says – it defines your sources. For the monitoring

of the web application, you are interested in the access logs. Access logs will give you

details about where requests are coming from, what requests are hacking attempts, and

what searches are the hottest so you could possibly enable targeted advertising to

generate more revenue.

The web application has a tool that rotates logs periodically and it organizes those logs

by day. The web server creates a new file each day for those day’s events. Since the

pattern is “YYYY-mm” – “2019-11” for the directory name and 2020 is shortly arriving, you

need to use the tail functionality for Fluentd. You define the pattern and Fluentd will tail

all files in that directory until they delete. Fluentd provides to a “position file” or pos_file

setting that is a file of pointers to the last line read in a file. As new data arrives, the

pointer advances. If Fluentd is shut down, it can be restarted and not have to read the

same data again because it knows where it left off.

The parse directive tells the plugin how to pull out the data (apache2 format, nginx format,

etc). This will read the file based on a regex pattern and transform them as a JSON

document.

The tag directive gives you a way in which filters can include or exclude different log types

in the same configuration file.

<source>

 @type tail

 path /var/log/httpd/%Y*/*-website.log

 pos_file /var/log/td-agent/apache.log.pos

 tag webserver.access.log

 <parse>

 @type apache2

 </parse>

</source>

https://docs.fluentd.org/input/tail
https://docs.fluentd.org/configuration/parse-section

Filter section

The filter sections allow you to add data, change data and even remove data to your final

output. You can install custom plugins or use the out of the box plugins that are

prepackaged with Fluentd.

Explore the ec2_metadata filter

The ec2_metadata filter uses the instance profile and metadata to extract specific details

about the AWS deployment. This filter adds fields to the access log data. You must have

an instance profile deployed on the EC2 instance to get access to this data and you need

to have the appropriate permissions for the plugin to make calls to informational APIs on

AWS.

<filter webserver.access.log>

 @type ec2_metadata

 metadata_refresh_seconds 300 # Optional, default 300 seconds

 <record>

 hostname ${tagset_name}

 instance_id ${instance_id}

 instance_type ${instance_type}

 private_ip ${private_ip}

 az ${availability_zone}

 vpc_id ${vpc_id}

 ami_id ${image_id}

 account_id ${account_id}

 </record>

</filter>

Explore the record_transformer filter

The record_transformer filter applies a new field to the access log data. This field gives

Logstash a specific keyword so that it can filter events coming from the Kinesis Data

Stream. For the React web server, you will use a key called “event_group” and associate

a value of “imdb” for the entry. Review the Logstash setup if you want to understand how

the conditional filtering works for sending to different indexes.

<filter webserver.access.log>

 @type record_transformer

 <record>

 event_group imdb

 </record>

</filter>

https://docs.fluentd.org/filter
https://github.com/takus/fluent-plugin-ec2-metadata
https://docs.fluentd.org/filter/record_transformer

Match section

The match section gives you the functionality of routing output to different destinations.

In this case, you are sending data to an Amazon Kinesis Data Stream. The

kinesis_streams plugin uses the instance profile and metadata to sign requests using

Sigv4. The EC2 instance has an IAM policy for access to the Amazon Kinesis Data

Stream. The values for the stream name and the region populate automatically in the

CloudFormation process.

<match webserver.access.log>

 # plugin type

 @type kinesis_streams

 # your kinesis stream name

 stream_name log-delivery-026925054f2e

 # AWS region

 region eu-central-1

 <buffer>

 # Frequency of ingestion

 flush_interval 5s

 # Parallelism of ingestion

 flush_thread_count 8

 </buffer>

</match>

Start the Fluentd agent (react server)

Fluentd is an open source product created and managed by a company called Treasure

Data, Inc. The agent that controls the startup is the td-agent. Navigate to your console

and execute the following commands:

 chown -R root:td-agent /var/log/httpd

 chmod -R 777 /var/log/httpd/

 service td-agent start

 less /var/log/td-agent/td-agent.log

[root@ip-10-1-6-222 td-agent]# service td-agent start

Starting td-agent (via systemctl): [OK]

[root@ip-10-1-6-222 td-agent]# less /var/log/td-agent/td-agent.log

Observe similar output in the logs:

2019-11-30 19:47:26 +0000 [info]: parsing config file is succeeded

path="/etc/td-agent/td-agent.conf"

2019-11-30 19:47:27 +0000 [info]: using configuration file: <ROOT>

 <source>

…

</match>

https://github.com/awslabs/aws-fluent-plugin-kinesis
https://www.fluentd.org/download
https://www.treasuredata.com/opensource/
https://www.treasuredata.com/opensource/

</ROOT>

2019-11-30 19:47:27 +0000 [info]: starting fluentd-1.7.0 pid=4494

ruby="2.4.6"

2019-11-30 19:47:27 +0000 [info]: spawn command to main: cmdline=["/opt/td-

agent/embedded/bin/ruby", "-Eascii-8bit:ascii-8bit", "/opt/td-

agent/embedded/bin/fluentd", "--log", "/var/log/td-agent/td-agent.log", "--

daemon", "/var/run/td-agent/td-agent.pid", "--under-supervisor"]

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-ec2-metadata' version

'0.1.2'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-elasticsearch' version

'3.5.4'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-kafka' version '0.11.1'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-kinesis' version '3.2.0'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-prometheus' version

'1.5.0'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-record-modifier' version

'2.0.1'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-rewrite-tag-filter'

version '2.2.0'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-s3' version '1.1.11'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-td' version '1.0.0'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-td-monitoring' version

'0.2.4'

2019-11-30 19:47:27 +0000 [info]: gem 'fluent-plugin-webhdfs' version '1.2.4'

2019-11-30 19:47:27 +0000 [info]: gem 'fluentd' version '1.7.0'

2019-11-30 19:47:27 +0000 [info]: adding filter

pattern="webserver.access.log" type="ec2_metadata"

2019-11-30 19:47:28 +0000 [info]: adding filter

pattern="webserver.access.log" type="record_transformer"

2019-11-30 19:47:28 +0000 [info]: adding match pattern="webserver.access.log"

type="kinesis_streams"

2019-11-30 19:47:28 +0000 [info]: adding source type="tail"

2019-11-30 19:47:28 +0000 [info]: #0 starting fluentd worker pid=4517

ppid=4512 worker=0

2019-11-30 19:47:28 +0000 [info]: #0 fluentd worker is now running worker=0

Validate you are receiving logs in Kibana

Navigate to your Kibana console. Go to the Dev Tools plugin and run the following

command:

 GET _cat/indices

Observe similar output and that an index prefixed with proxy exists.

You now have data for the proxy servers. Next, you need to configure the Kibana proxy

NGINX server to produce logs.

Log producer configuration (Fluentd) – Kibana Proxy - NGINX Server
Since the proxy server brokers Kibana requests, you want to capture the access logs

generated by NGINX. Just as seen with the web application Apache servers, you will tail

a file, enhance the data and then

Navigate to AWS Systems Manager and begin a session on the proxy server.

Once the console renders in your browser, click in the web page and type the following

commands:

 sudo su – root

 cd /etc/td-agent/

 ls –al

 less td-agent.conf

You will see output similar to what shows below:

sh-4.2$ sudo su - root

Last login: Sat Nov 30 20:26:55 UTC 2019 on pts/0

[root@ip-10-1-0-150 ~]# cd /etc/td-agent/

[root@ip-10-1-0-150 td-agent]# ls -al

total 20

drwxr-xr-x 3 root root 61 Nov 30 20:05 .

drwxr-xr-x 86 root root 8192 Nov 29 18:27 ..

drwxr-xr-x 2 root root 6 Nov 29 15:30 plugin

-rw-r--r-- 1 td-agent td-agent 1004 Nov 30 20:05 td-agent.conf

-rw-r--r-- 1 root root 2381 Nov 29 15:30 td-agent.old

[root@ip-10-1-0-150 td-agent]# less td-agent.conf

The noticeable difference in this configuration compared to the web server are the

following sections.

Source section

Compared to the web server, the proxy server reads from NGINX access logs. The

configuration varies to read a different directory and use a different parser – the nginx

parser.

<source>

 @type tail

 path /var/log/nginx/access.log

 pos_file /var/log/td-agent/access.log.pos

 tag proxy.nginx.access

 <parse>

 @type nginx

 </parse>

</source>

Filter section

The only difference between the web server and the proxy server in this section is the

event_group is “proxy” instead of “imdb”.

<filter proxy.nginx.access>

 @type record_transformer

 <record>

 event_group proxy

 </record>

</filter>

Start the Fluentd agent (proxy server)

Navigate to your console and execute the following commands in the session manager:

 service td-agent start

 less /var/log/td-agent/td-agent.log

[root@ip-10-1-0-150 td-agent]# service td-agent start

Starting td-agent (via systemctl): [OK]

[root@ip-10-1-0-150 td-agent]# less /var/log/td-agent/td-agent.log

Observe similar output in the logs:

019-12-01 01:09:51 +0000 [info]: starting fluentd-1.7.0 pid=17110

ruby="2.4.6"

2019-12-01 01:09:51 +0000 [info]: spawn command to main: cmdline=["/opt/td-

agent/embedded/bin/ruby", "-Eascii-8bit:ascii-8bit", "/opt/td-

agent/embedded/bin/fluentd", "--log", "/var/log/td-agent/td-agent.log", "--

daemon", "/var/run/td-agent/td-agent.pid", "--under-supervisor"]

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-ec2-metadata' version

'0.1.2'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-elasticsearch' version

'3.5.4'

https://docs.fluentd.org/parser/nginx

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-kafka' version '0.11.1'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-kinesis' version '3.2.0'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-prometheus' version

'1.5.0'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-record-modifier' version

'2.0.1'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-rewrite-tag-filter'

version '2.2.0'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-s3' version '1.1.11'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-td' version '1.0.0'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-td-monitoring' version

'0.2.4'

2019-12-01 01:09:51 +0000 [info]: gem 'fluent-plugin-webhdfs' version '1.2.4'

2019-12-01 01:09:51 +0000 [info]: gem 'fluentd' version '1.7.0'

2019-12-01 01:09:51 +0000 [info]: adding filter pattern="proxy.nginx.access"

type="ec2_metadata"

2019-12-01 01:09:52 +0000 [info]: adding filter pattern="proxy.nginx.access"

type="record_transformer"

2019-12-01 01:09:52 +0000 [info]: adding match pattern="proxy.nginx.access"

type="kinesis_streams"

2019-12-01 01:09:52 +0000 [info]: adding source type="tail"

2019-12-01 01:09:52 +0000 [info]: #0 starting fluentd worker pid=17133

ppid=17128 worker=0

2019-12-01 01:09:52 +0000 [info]: #0 following tail of

/var/log/nginx/access.log

2019-12-01 01:09:52 +0000 [info]: #0 fluentd worker is now running worker=0

2019-12-01 01:10:05 +0000 [info]: #0 disable filter chain optimization

because [Fluent::Plugin::RecordTransformerFilter] uses `#filter_stream`

method.

Validate you are receiving logs in Kibana

Navigate to your Kibana console. Go to the Dev Tools plugin and run the following

command:

 GET _cat/indices

Observe similar output and that an index prefixed with proxy exists.

Jump to Lab 3.

https://search-sa-log-solutions.s3-us-east-2.amazonaws.com/fluentd-kinesis-logstash/docs/Amazon_Elasticsearch_Service_Lab_3.pdf

